

Hybrid Simulation and Downburst Simulation Capabilities and Research Opportunities

Speakers: Amal Elawady (WOW-EF, FIU)

August 11, 2020 9:20-9:40 PDT

This workshop is coordinated by the Natural Hazards Engineering Research Infrastructure's (NHERI) Wall of Wind and the NHERI SimCenter and is supported by the National Science Foundation award CMMI 1520853 and 1612843. Any statements in this material are those of the presenter(s) and do not necessarily reflect the views of the National Science Foundation.

1. Downburst Simulations at The NHERI Wall of Wind Experimental Facility

Introduction

Introduction

Microburst

Size: <2.5 miles

Speed: ~170 mph

Duration: 5-15 minutes

Macroburst

Size: >2.5 miles

Speed: ~140 mph

Duration: 5-30 minutes

Fujita 1985 and http://noaa.com

Introduction

Downburst

VS.

Tornado

Source: noaa.com

Downburst vs. Synoptic Wind

NHERI Experimental Facility

Downburst vs. Synoptic Wind

Challenges

- Design guidelines are based on conventional boundary layer profile.
- Wind profiles and time histories are substantially different compared to synoptic winds.
- Localized nature both in Space and Time
 - ✓ difficult to forecast or measure.
 ✓ Non-uniform loading on long space
 - Non-uniform loading on long span structures

Source: OAR/ERL/National Severe Storms Laboratory (NSSL) (NOAA Photo Library, NOAA Central Library)

Challenges

✓ Non-uniform loading on long span structures

Downburst Damages to Structures

Source: Manitoba Hydro (1996) – 20 towers failed

Source: Hydro One Company, 2006

Source: www.srh.noaa.gov

https://www.weather.gov

https://www.weather.gov/

https://bowmanextra.com/

Parameters Affecting Downburst Intensity

becomes independent of H/D.

- Distance ratio R/D
- Jet velocity

The Main Challenge is to a achieve a sufficiently large flow for structural applications

Wall of Wind

NHERI Experimental Facility

Downburst Simulations at the WOW

The FIU Downburst simulator is supported by a grant from the National Science Foundation (<u>#1762968</u>).

1:15 Small-Scale WOW

Downburst Simulator Alternatives

Wall of Wind NHERI Experimental Facility

Downburst Simulator Alternatives

Wall of Wind NHERI Experimental Facility

Option D: 2-Slat Louver

Option D: 2-Slat Louver

Development of the vortex throughout the domain (Roughness 1); (a) t=0.04 s; (b) t=0.185 s; (c) t= 0.395 s; (d) t=0.525 s

Downburst Velocity Decomposition

-10 Time (sec) Fluctuating Mean (M) 4U 4U m -10 -10 Time (sec) Time (sec)

Wall of Wind

NHERI Experimental Facility

Downburst Velocity Decomposition

 A suitable time average is required to extract the moving mean that follows the trend and sharp step of the instantaneous wind speed time history.

Wall of Wind

NHERI Experimental Facility

Validation

Downburst Scaling

$$H_{\text{max,real Downbursts}} = 5 \text{ m to 100 m} \implies \lambda_L = \frac{0.05}{100} = 1/2000$$
$$\lambda_L = \frac{0.6}{5} = 1/8.3$$

Parameter	Scaling ratio
Length	$egin{aligned} & \lambda_L = rac{L_m}{L_p} = \lambda_V \lambda_t \end{aligned}$
Velocity*	$\lambda_{_V} = rac{V_m}{V_p}$
Time	$\lambda_t = rac{t_m}{t_p} = rac{\lambda_L}{\lambda_V} = rac{L_m}{L_p}rac{V_p}{V_m}$

Downburst event	Acceleration of	Deceleration of
	ramp-up	ramp-down
	(m/s²)	(m/s²)
Real event	0.26	-0.25
Option A	0.43	-0.12
Option B	1.25	-0.86
Option C	0.46	-0.34
Option D	0.12	-0.12
Option E	0.69	-0.90

Recent NSF Project Utilizing the Downburst Simulator at WOW

PI: Amal Elawady (FIU), Abdollah Shafieezadeh, Ohio State University

NSF Program: Engineering for Natural Hazard (ENH)

Experiment: A series of aeroelastic wind tunnel studies on the downburst response of multi-span transmission systems at the NHERI Wall of Wind EF at FIU.

Wall of Wind

IHERI Experimental Facility

Title:	Structural Response in Transient Winds of Hurricanes and Downbursts
PI:	Teng Wu (Buffalo)
NSF Program:	NEES RESEARCH

Experiment: Aerodynamic wind testing studies on the synoptic and downburst response of tall buildings at the NHERI Wall of Wind EF at FIU.

Hybrid Simulation Capabilities and Research Opportunities 2.

Individual Capabilities vs. Hybrid Simulation

Wind Testing (WT)

CFD Simulation

Tamani, Tower Dubai, UAE; Courtesy of BLWT, UWO

http://www.inex.fr/

Finite Element Modeling + WT or CFD

z 📥

Hybrid Simulation?

Numerical Substructure

Numerical Simulation Data

Physical Response Data

Physical Substructure

RTHS Advantages in Wind Engineering

1

Large scales testing	Eliminate possible scaling effects.
Coupling wind testing with a numerical modeling	Capture nonlinear effects for the entire structure
Simulation of wind- structure interaction	Understand wind-induced response, aerodynamic damping effects using large-scale experiments
Allows combining different loading scenarios	Study multi-hazard effects (e.g. wind and flooding effects)

Scaling Effects Challenges

Wall of Wind NHERI Experimental Facility

A 1:500 scale rigid model of the Burj Dubai A 1:50 scale model

Small Scale Tests:

Length scale D_m/D_p = 1:300; Velocity scale U_m/U_p = 1:5; Time scale $\Delta t_m/\Delta t_p$ = 1:60.

1 sec. in wind tunnel represents 1 min at full scale; 60 Hz in wind tunnel represents 1 Hz at full scale.

Time and frequency scaling issues pose challenge:

- Numerical simulations may not be 'fast' enough;
- Actuators to apply deflections on physical sub-structure in wind tunnel may not have adequate frequency response.

Large Scale Tests:

Length scale $D_m/D_p = 1:20$; Velocity scale $U_m/U_p = 1:5$; Time scale $\Delta t_m/\Delta t_p = 1:4$

sec. in wind tunnel represents 4 sec. at full scale;
 Hz in wind tunnel represents 1 Hz at full scale.

Case Study: Tall building with Rooftop Mast

NHERI Experimental Facility

Prudential Tower, Boston, MA

One World Trade Center, NY

Taipei, Taiwan

Willis Tower, IL

Copyrights: http://www.ctbuh.org

Selected Case Study

Prototype: 40 Story Building:

- Located in Los Angeles designed by SGH for PEER Tall Building Initiative.
- The current study adopts a rooftop monopole communication structure.

Ref.: Moehle et al., PEER 2011/05

WOW testing: Aero-elastic-Numerical

Building + Rooftop tower

Mode 1: 0.55 Hz

 Aerodynamic wind pressure testing at NHERI WOW to establish baseline.

Aerodynamic model Peak Cp contours

 Developing a 3D Finite Element Model for the building with the mast

WOW testing: Aeroelastic-Numerical

Real-Time Multi-Hazard Simulation

Research Questions

This poses a challenge related to the definition of the forcing function in the numerical simulation with respect to the wind tunnel loading imposed on the physical substructure.

Wall of Wind

NHERI Experimental Facility

Forcing function discrepancies sources:

- 1. The variability of the peak pressure coefficient because of the random nature of the peak.
- 2. The uncertainty in the relevant statistics of the peak because of the limited size of the record.
- 3. The uncertainty with respect to the actual value of the roughness length.
- 4. The uncertainty associated with the measurement of the wind speeds.
- 5. The sampling errors in the estimation of the wind speed with a specified mean recurrence interval.

NHERI Experimental Facility

- Transmission tower systems: conductors are modeled as substructure.
- Cladding systems vibrations and water penetration: cladding panel as a <u>substructure</u>.
- Offshore structures (wind turbines; floating substructures): wave actions on submerged system modeled using actuators and WT as <u>substructure</u>.
- Damping systems on a tall building: damper system and building potion as <u>substructure</u>.
- Communication infrastructure, Traffic signals, Variable Message Signs.

Committee on RTHS in Fluid-Structure Interaction (FSI) Applications

MULTIHAZARD ENGINEERING COLLABORATORY ON HYBRID SIMULATION

A RESEARCH COORDINATION NETWORK

- Recently, the MECHS Coordination Network has established a new committee on RTHS in Fluid-Structure Interaction (FSI).
- The committee brings together researchers from different institutions around the world: USA, Canada, Denmark, Norway, Colombia; with expertise in RTHS, Wind Engineering, Wave Engineering.
- The committee aims to leverage the RTHS techniques to include FSI applications to foster the capabilities of traditional wind and wave testing methods.

Wall of Wind

NHERI Experimental Facility

Name	Affiliation
Amal Elawady (CHAIR)	Florida International University
Arindam Gan Chowdhury	Florida International University
Richard Christenson	University of Connecticut
James Ricles	Lehigh University
Oh-Sung Kwon	University of Toronto
Denis Istrati	University of Nevada, Reno
Steven Wojtkiewicz	Clarkson University
Pedro Fernandez-Caban	Clarkson University
Thomas Michel Sauder	SINTEF
Pedro Lomonaco	Oregon State University
Barbara Simpson	Oregon State University
Wei Song	University of Alabama
Jacob Waldbjørn	University of Denmark
Amin Magahareh	Purdue University
Brian Phillips	University of Florida
Teng Wu	University at Buffalo
Peter Thomson	University of Cali, Colombia
Shirley Dyke	Purdue University

Thanks you!