

Test Design and Planning Using NHERI WOW EF

1

Outline

- Aeroelastic Test
- Aerodynamic Test
- Wind-Driven Rain Test
- Destructive Test

Aeroelastic Test

3

Project Description

Title: Experimentally Validated Stochastic Numerical Framework to

Generate Multi-Dimensional Fragilities for Hurricane Resilience Enhancement of Transmission Systems

PI: Abdollah Shafieezadeh, Ohio State University

NSF Program: Engineering for Natural Hazard (ENH)

Experiment: A series of aeroelastic wind tunnel studies on the wind response of multispan transmission systems at the NHERI Wall of Wind EF at FIU.

Why we need aero-elastic testing:

- Buildings that are dynamically excited under wind actions (frequency <1Hz).
 - ✓ Inertial loads developing in a structure are function of the swaying and the twisting motions under wind actions.
 - ✓ Deformed shape of the structure at any time instant is a function of the wind load and deformations imposed on the structure for several previous minutes.

Aero-elastic testing is the most reliable approach to predict the building deformation under wind actions.

5

Philosophy behind aero-elastic modeling Length Scale (shape of building) Mass, mass moment of inertia, damping Wall of Wind Wolfer Experimental Facility Moments, shear forces, and accelerations

elastic model design		NHERI Experime
Parameters	Similitude Requirements	Scaling Ratio
Length	$\lambda_L = L_m/L_f$	1: 50
Velocity	$\lambda_V = \lambda_L^{0.5}$	1: 7.07
Time	$\lambda_T = \lambda_L/\lambda_V$	1: 7.07
Density	$\lambda_{\rho} = \rho_{\rm m}/\rho_{\rm f}$	1: 1
Mass	$\lambda_M = \lambda_\rho \lambda_L^3$	1: 125,000
Mass Moment of Inertia	$\lambda_i = \lambda_M \lambda_L^2$	1: 312,500,000
Acceleration	$\lambda_a = \lambda_V / \lambda_T$	1: 1
Damping	$\lambda_{\zeta} = \zeta_m / \zeta_f$	1: 1
Axial Stiffness	$\lambda_{EA} = \lambda_V^2 \lambda_L^2$	1: 125,000
Bending Stiffness	$\lambda_{EI} = \lambda_V^2 \lambda_L^4$	1: 312,500,000
Force	$\lambda_F = \lambda_V^2 \lambda_L^2$	1: 125,000
Force / m'	$\lambda_f = \lambda_V^2 \lambda_L$	1: 2500
Bending and Torsional Moment	$\lambda_{BM-TM} = \lambda_V^2 \lambda_L^3$	1: 6,250,000
Warping Stiffness	$\lambda_{CW} = \lambda_V^2 \lambda_L^6$	1: 781,250,000,000

Fre	Free Vibration Analysis Wall of Wind						
	Mode	Shape	Prototype Frequency (Hz)	Frequency scale	Target Frequency (Hz)		
	1		1.44		1.44*7.07=10.18		
	2		1.88	1/Time Scale=7.07	1.88*7.07=13.3		
	3		2.44		2.44*7.07=17.25		

Æ	\ero-elastic	Wall of Wind				
	Mode	Shape	Prototype Frequency (Hz)	Model Target Frequency (Hz)	Model Frequency (Hz)	Difference
	1		1.44	10.18	10.3	1.3%
	2		1.88	13.3	14.3	7.8%
	3		2.44	17.25	18.7	8%

- Canopies, sunrooms, carports, garages, storage rooms etc.
- Canopies:
 - > Attached or free-standing
 - > Open or surrounded by walls;

17

Wind Effects on Canopies Attached to Low/Mid-Rise Buildings

- Current knowledge regarding wind-induced pressures is restricted to a limited number of studies
- Most wind standards and codes of practice do not provide design guidelines

Code	Patio Cover	Other	Guidelines	Note
IBC/IRC & AC340	✓		×	1
ASCE 7	×		×	2
NBCC	×		×	
AS/NZS 1170.2:2002	×	Attached Canopies	✓	3
IS:875 - 1987	×	Combined roofs	√	4
prEN1991-1-4	×		×	
BS 6399-2	×		×	

- Complex flow: canopy/building interaction
- Top/bottom surface → C&C loads
- Net effect → Overall design

19

Wind Effects on Canopies Attached to Low/Mid-Rise Buildings

- Investigate the wind effects on canopies and sunrooms
- Consider low- and mid-rise residential buildings
- Evaluate effect of various geometric parameters
- Contribute to the efforts of developing design guidelines that can be incorporated in wind standards and building codes

- Codification of experimental findings (ASCE 7 format / area-averaging graphs):
- How do we generate this graph?
 - ➤ Parametric study
 - ➤ Detailed surface pressure data

21

Wind Effects on Canopies Attached to Low/Mid-Rise Buildings

- Parameters:
 - >canopy height(hc)
 - ➤width (wc)
 - ➤length (lc)
 - ➤ distance from wall (ed)

Low-rise building: 1:6 scaleMid-rise building: 1:20 scale

25

Wind Effects on Canopies Attached to Low/Mid-Rise Buildings

 \bullet Minimum $C_{\text{p,net}}$ contours on attached canopy at 45° wind direction

