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 Existing Testing Capabilities: * Recent and Scheduled Upgrades:
» Aerodynamic Test » Automated Roughness
» Aeroelastic Test » Robotic Arm
» Wind-Driven Rain Test » PIV (MRI)

» Destructive Test » Downburst Simulator
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Aerodynamic Test



* Example Project: Wind Effects on Canopies Attached to Low/Mid-Rise
Buildings

» Complex flow: canopy/building interaction
» Top/bottom surface taps (differential wind pressure) - C&C loads
» Net wind effect 2 Overall design




Aerodynamic Test
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Aerodynamic Test

* Example Project: Wind Effects on Elevated Houses
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Aerodynamic Test

e Sample Results (used for Codification):
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Aeroelastic Test



Why we need aero-elastic testing? FI'U Wall of Wind

e Certain structures may experience significant aerodynamic forces generated by

structural motions.

* These motions, called self-excited, are in turn affected by the aerodynamic forces they
generate.

* The structural behavior associated with self-excited motions is called aeroelastic.

* Aero-elastic testing is the most reliable approach to predict the structural deformation
and aeroelastic feedback under wind actions.




Aero-elastic Model Design

Length Scale
(shape of
building)

Mass, mass
moment of
inertia, damping

Velocity Scale

lon
Moments, shear
forces, and
accelerations

Parameters Similitude Scaling Ratio

Requirements
Length i = Ln/Ly 1: 50
Velocity iv= % 1: 7.07
Time ir= i)y 1: 7.07
Density 0= Pml Py 5 |
Mass = Lply 1: 125,000
Mass Moment of Inertia b= dagig® 1: 312,500,000
Acceleration ‘o= ryliy I:1
Damping = {mlly 1: 1
Axial Stiffness PgA™ A igd 1: 125,000
Bending Stiffness iy = iy 1: 312,500,000
Force Ap= Ayii2 1: 125,000
Force | m’ A= i 1: 2500
Bending and Torsional Moment FanTM = A 1: 6,250,000
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Free Vibration Analysis FIU e of wina

W T F
ode Shape Prototype Frequency (Hz) Frequency scale arget (::?uency

1 1.44 1.44*7.07=10.18
1/Time

2 1.88 Scale=7.07 1.88*7.07=13.3

3 2.44 2.44*7.07=17.25




Aero-elastic Model Design

Equivalent Reduced Scale Model
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Expected Outcomes from an aero-elastic testing
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Wind-Driven Rain Test

Steps:

+  Combined Data
m" L Normalized RSD Gamma Model Based on Avg. m 1

 Determine target wind-driven rain parameters
(characteristics of rain associated with tropical
storms and hurricanes have been studied by
many researchers) - 'l
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Fig. 10. RSD of simulated WDR using TEEJET 8008 — E nozzles,



Wind-Driven Rain Test

Water-Injection System for Wind-Driven Rain



 Sample Results (Exterior)

Findings: The leading edge/corner regions receive less volume surface runoff rainwater; The rain
water accumulation increases toward the leeward roof surfaces. 18



Wind-Driven Rain Test

 Sample Results (Interior)
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Wind-Driven Rain Test

 Sample Results (Interior)
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Wind-Driven Rain Test FI“ ‘"‘fa" S
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e |nstrumentation and WDR Intrusion Results:
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Comparison of water intrusion collected in catch basin
| for 0° wind direction, 62 mph test case.
— a) Nonimpact window,

b) Accordion shutter.
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Destructive Test



Example Project -- Performance of Traffic Signal Assemblies FI“ bt

* Traffic signals are an important part of civil infrastructure

* In 2003-2004, hurricanes with wind speeds exceeding 100 mph caused considerable
damage to traffic signals in Florida and other states

 Failure of the signal systems results in unsafe traffic conditions during and after a
storm, and the time taken for repairs delays recovery

e Span wire traffic signals are widely being used in the state of Florida and other states
in USA

Catenary wire

Mes wire ||

: b |

Signal units /
End support post
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Example Project -- Performance of Traffic Signal Assemblies FI“ bt

» Test rig with a span of approx. 21 ft

* Objective: span-wire possesses the same deflection versus force relationship as the
field span

* Springs added at the ends of the messenger/catenary wires

24



Example Project -- Performance of Traffic Signal Assemblies FI“ bt

* Test rig with a span of approx. 75 ft

* Objective: validate short-span test rig

25



Example Project -- Performance of Traffic Signal Assemblies FI“ bt

e Vast amount of data was collected

Peak drag and Lift
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Example Project -- Performance of Traffic Signal Assemblies FI“ bt

 Removed all instrumentation and increased wind speed up to Cat-5 hurricane (157 mph)

27



Full-scale Destructive Test — Roof Paver Lift-off Speed

Live Streaming
of Experiments
using
Telepresence at
WOW EF

Neteremce Wit Jpeee ot 10

FIU 1191 .

63.2 ~ 103.6+

WORKEHOM DEMO
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Studies of Light Frame Residential Structures and rl'u' ‘WH.. of Wind
Retrofit Techniques e —

e Link to IMAX Video



https://www.youtube.com/watch?time_continue=2&v=d5qjZO7dVDg
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New Capabillities



NHERI WOW EF Upgrades

e

New Automated Roughness System will New Automated 3-Axis Traverse System (robot
significantly reduce the test time setup. arm) will help to quickly characterize windglfield.



Feedback and [ Wind Tunnel
Control Signals

Fans turn on
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Reaction
Frame

Simulation of non-synoptic downburst wind Hybrid Simulation capabilities will be
flow at large scales for downburst-structure implemented.

interaction studies.
32



Acquisition of a Three Component Particle-Image Velocimetry System to Enable Fundamental
Research in Wind Engineering and Fluid Mechanics (NSF MRI award #1828585)
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